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Abstract

In prostate cancers (PCa), the formation of malignant

stroma may substantially influence tumor phenotype

and aggressiveness. Thus, the impact of the orthotopic

and subcutaneous implantations of hormone-sensitive

(H), hormone-insensitive (HI), and anaplastic (AT1)

Dunning PCa in rats on growth, microcirculation, and

metabolism was investigated. For this purpose, dy-

namic contrast-enhancedmagnetic resonance imaging

and 1H magnetic resonance spectroscopy ([1H]MRS)

were applied in combination with histology. Consistent

observations revealed that orthotopic H tumors grew

significantly slower compared to subcutaneous ones,

whereas the growth of HI and AT1 tumors was com-

parable at both locations. Histologic analysis indicated

that glandular differentiation and a close interaction of

tumor cells and smooth muscle cells (SMC) were

associated with slow tumor growth. Furthermore,

there was a significantly lower SMC density in sub-

cutaneous H tumors than in orthotopic H tumors. Per-

fusion was observed to be significantly lower in

orthotopic H tumors than in subcutaneous H tumors.

Regional blood volume and permeability–surface area

product showed no significant differences between

tumor models and their implantation sites. Differences

in growth between subcutaneous and orthotopic H

tumors can be attributed to tumor–stroma interac-

tion and perfusion. Here, SMC, may stabilize glandular

structures and contribute to the maintenance of differ-

entiated phenotype.
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Introduction

Autopsy studies indicate that almost 30% of all men older

than 50 years show microscopic prostate cancers (PCa)

[1,2]. However, in contrast to most other malignant tumors,

there is a high discrepancy between prevalence and mortality,

and < 10% of men with PCa suffer from symptomatic disease

during their lifetime [3]. About 29% of white men and 44% of

black men are estimated to be overdiagnosed and overtreated

[4]. Thus, there is an essential demand to distinguish aggres-

sive PCa requiring therapeutic intervention from low malignant

tumors, which will not become symptomatic.

Germline mutations leading to the dedifferentiation of

normal prostate epithelium into androgen-independent PCa

have been identified. The final step from localized PCa to

metastatic phenotype is accompanied by androgen receptor

changes and specific gene amplifications and losses [5]. Com-

pared with their primary tumors, metastases are frequently

marked by a faster and more infiltrative growth [6]. Besides

genetic changes, the degree to which the heterotopic localiza-

tion of metastases additionally influences phenotypic changes

between primary tumors and metastases is poorly understood.

This may be related to further selection of more resistant

and aggressive subclones, the interaction of tumor cells with

the surrounding fibroblastic stroma, and the development

of neovascularization [7,8].

Experiments performed by Cunha et al. [7] and Hayward et al.

[9] demonstrated that there is an epithelial–mesenchymal inter-

action in PCa development and that normal epithelial cells

can be transformed by their microenvironment. Thus, aberrant

interactions are most likely relevant in PCa development, and

their investigation in experimental PCa may provide promising

options for diagnosis and therapy.
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Noninvasive imaging techniques have gained importance

in the investigation of tumor growth and spread. Noninvasive

optical imaging of stable transfected cell lines expressing

fluorescent molecules is of high value in preclinical research

[10,11]. Magnetic resonance imaging (MRI) is frequently

used for the detection and staging of PCa in patients. Recent

developments in MRI and magnetic resonance spectros-

copy (MRS) have improved our understanding of tumor

biology and have particularly enabled the detection and char-

acterization of PCa and lymph node metastasis [12–14]. In

this context, improved sensitivity and specificity for the de-

tection of PCa were achieved by supplementing morphologic

MRI with [1H]NMR spectroscopic imaging [15,16] to as-

sess tumor metabolism. Furthermore, dynamic contrast-

enhanced MRI (DCE-MRI) is frequently used to characterize

microcirculation in PCa [17,18]. It has been shown that even

simple parameters describing signal time courses after in-

jection of a contrast agent, such as the initial slope and the

maximum of relative signal enhancement, assist in the differ-

entiation between PCa and normal peripheral glands [18].

However, for a more precise analysis of tumor physiology,

pharmacokinetic models providing quantitative data on re-

gional blood volume (RBV), regional blood flow (RBF; perfu-

sion), and capillary permeability are highly desirable. These

parameters can be estimated, for example, by pharmaco-

kinetic analysis of acquired DCE-MRI data using an open

two-compartment model [19].

Clinical [1H]MRS studies have demonstrated that signal

intensities of the metabolites citrate (Ci; multiplet centered at

chemical shift d = 2.6 ppm), choline and choline-containing

compounds (Cho; d = 3.22 ppm), and creatine and phospho-

creatine (Cr; d = 3.03 ppm) provide a measure for the bio-

chemical characterization of prostatic lesions (‘‘CC/C value’’).

In the normal prostate, Ci is secreted and stored in the

peripheral zone and, therefore, causes an intense signal in

the [1H]MR spectrum. In PCa, the Ci concentration, hence the

corresponding [1H]MR signal, often exhibits a decrease. An

elevated Cho signal indicates increased membrane turnover

and cell necrosis. Cr are related to the energy metabolism

of cells and are useful for standardization because these

metabolites usually do not increase in tumors. Thus, an in-

creased amount of Cho typically found in tumors with high

proliferative activity [20,21] and a decrease in Ci + Cr signal

intensities have proven to be useful markers of PCa [15].

Lipid fractions, which are an indicator of cell degeneration

(i.e., of necrosis and, therefore, possibly of anaplasia), have

not been studied in PCa so far. However, a recent study on

hepatocellular carcinomas indicated that dedifferentiation

of liver lesions goes with an increase in the concentrations

of free lipids [22]. Thus, lipid fractions are also a possible

candidate for supplementing the grading of PCa.

However, up to now, it is uncertain whether DCE-MRI and

[1H]MRS are capable of assessing tumor aggressiveness

[23–25]. In this context, the correct staging of PCa has been

revealed to be complicated by the heterogeneous and multi-

focal nature of this tumor. Usually, there is no solitary PCa

clone deriving from one tumor cell but a conglomerate of

benign glandular structures, preneoplastic foci (prostatic

intraepithelial neoplasia), and neoplastic foci with different

grades of dedifferentiation [26]. These aspects of PCa have

been considered in histologic Gleason grading, which proved

to be an excellent prognostic indicator [27].

Based on these findings, we investigated the influence of

tumor environment on the development of experimental

prostate tumors with different malignancies in rats. Tumors

were exposed to different microenvironments by orthotopic

and subcutaneous implantations. Tumor growth, spread,

microcirculation, and metabolism were evaluated by morpho-

logic MRI, DCE-MRI, and [1H]MRS, in combination with

histopathological analysis.

Materials and Methods

Animals and Tumor Models

Experiments were performed with the approval of the

institutional committee for animal research and in confor-

mity with national guidelines for the care and use of labora-

tory animals.

As a tumor model for PCa, the original Dunning R3347

PCa of rats from J. T. Isaacs (John Hopkins, Baltimore, MD)

was chosen, which spontaneously arose in a Copenhagen

rat and was isolated from lymph node metastasis in 1963

[28]. Different sublines were drawn by repeated passaging in

castrated rats. Their common characteristic is resemblance

to human prostate carcinoma with respect to both histologic

and enzymatic patterns [29,30].

In the present study, the well-characterized sublines

H (hormone-sensitive), HI (hormone-insensitive), and AT1

were chosen for their different volume-doubling times, hor-

monal dependency, and histologic phenotype. The subtype H

was observed to be highly differentiated and hormone-

dependent, whereas the HI Dunning tumor was moderately

differentiated, was insensitive to hormones, and produced

mucin. The AT1 subline used as the third model forms ana-

plastic hormone-independent tumors without glandular diff-

erentiation. The volume-doubling time ranged from 20 days

for subtype H, to 10 days for subtype HI, to 2.7 days for AT1

tumors. The three sublines exhibited a low metastatic poten-

tial in common [31].

A total of n = 49 adult male Copenhagen rats (body weight:
f 180–200 g; age: 4–6 weeks) were included. Tumors of

the three sublines were inoculated subcutaneously in the

right hind leg using fragments of donor tumors with a volume

of approximately 1 to 2 mm3. Alternatively, tumor fragments

were implanted orthotopically in the dorsolateral lobe of

the prostate following a protocol described by Lein et al.

[32,33] and Hahn et al. [34]. In our study, a higher number

of orthotopic H tumor implantations were necessary due to a

lower tumor take rate (Figure 1).

Anesthesia

For tumor inoculation and MR examinations, the rats were

anesthetized by inhalation of a mixture of isoflurane (1.5%),

N2O (35%), and oxygen (60%). Tail vein was catheterized

with a 26-gauge cannula (Abbott, Sligo, Ireland).
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MRI

MRI was performed on a clinical 1.5-T whole-body MR

system (Magnetom Symphony; Siemens Medical Solutions,

Erlangen, Germany) using a home-built coil for radio-

frequency excitation and detection, designed as a cylindrical

volume resonator with an inner diameter of 83 mm and a

usable length of 120 mm [17].

Animals with orthotopic tumors were examined with

transversal and sagittal imagings, whereas those with sub-

cutaneous tumors were examined with transversal and cor-

onal T2-weighted (T2w) turbo spin echo (TSE) MR sequences

according to the following protocols: transversal T2w TSE: re-

petition time TR = 3240 milliseconds, echo time TE = 81 milli-

seconds, matrix size MA = 256 � 152, field of view (FOV) =

90 � 54 mm2, slice thickness TH = 1.5 mm; coronal T2w TSE:

TR = 3240 milliseconds, TE = 72 milliseconds, MA = 256 �
108, FOV = 150 � 63 mm2, TH = 2 mm; sagittal T2w TSE: TR =

3240 milliseconds, TE = 78 milliseconds, MA = 255 � 88,

FOV = 150 � 51 mm2, TH = 1 mm.

When tumors reached a diameter of approximately 5 mm,

morphologic MRI was supplemented with DCE-MRI. On

the basis of acquired T2w images, two transversal sections

were defined (TH = 4.5 mm, FOV = 130 � 98 mm2): one at the

position of maximum tumor size, and the other at the heart

level to determine the arterial input function from the left

ventricle or the thoracic aorta. To estimate the precontrast

longitudinal relaxation times (T1) of blood and carcinoma,

T1-weighted (T1w) images were acquired from predefined sec-

tions using a saturation–recovery Turbo FLASH sequence

(TR = 373 milliseconds, TE = 1.76 milliseconds, flip angle a =

20j, MA = 192 � 144, FOV = 130 � 98 mm2) with recovery

times (TREC) varying between 200 and 4000 milliseconds.

The same sequence was used for DCE-MRI, with TR =

373 milliseconds, TE = 1.76 milliseconds, TREC = 130 milli-

seconds, a = 20j, and TH = 4.5 mm. In total, 512 dynamic

scans were acquired from both sections, with a temporal

resolution of 0.6 s. Five seconds after starting DCE-MRI mea-

surements, 200 ml (0.1 mmol/kg body weight) of the para-

magnetic contrast agent Gd-DTPA-BMA (Omniscan; GE

Healthcare, Munich, Germany) was injected manually within

2 seconds into the tail vein of rats. Finally, postcontrast

high-resolution T1w FLASH images covering the whole

tumor region were obtained (TR = 600 milliseconds, TE =

14 milliseconds, MA = 144 � 256, FOV = 72 � 54 mm2,

a = 90j, TH = 1.5 mm).

MRS

When subcutaneous tumors exhibited diameters larger

than 5 mm, localized [1H]MR spectra were obtained using

an horizontal-bore (20 cm) animal spectrometer with B0 =

9.4 T (9.4/20 BioSpec; Bruker BioSpin MRI GmbH, Ettlingen,

Germany). Following T2w MRI for tumor localization, single-

voxel [1H]MRS was performed [point-resolved spectroscopy

(PRESS) with selective water signal suppression, TR =

2000 milliseconds, TE = 14 milliseconds, number of excita-

tions = 128, voxel size = 4 � 4 � 4 mm3] using a surface coil

of 2 cm diameter. Three subcutaneous tumors of each sub-

line were examined, and each tumor was measured thrice

with the same sequence parameters for validation of intra-

individual reproducibility. Attempts to acquire MR spectra

from the prostate failed because of varying susceptibilities

in the pelvis and markedly lower sensitivity of the surface

coil to intraprostatic signals compared to subcutaneously im-

planted tumors.

Data Analysis

Tumor volumes were estimated by assuming ellipsoidal

shapes from tumor diameters determined for three ortho-

gonal directions from T2w MR images. Due to the presence of

large variations in growth rates between different sublines,

Figure 1. Study plan. The study plan includes the number of animals in which H, HI, and AT1 tumors were implanted and the number of implantations that led to

successful tumor growth (take rate in brackets). Bottom line: Time intervals of examinations with MRI.
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we relinquished to consider tumors that were grown for the

same period of time, but rather compared tumors of similar

sizes (at least 5 mm diameter) and lacking extended areas

of necrosis.

For quantitative analysis of DCE-MRI data, MR signal time

courses were determined from regions of interest defined

over the central part of the right ventricle (or the aorta) and

within each tumor. For each region, precontrast T1 relaxa-

tion times were estimated by nonlinear regression analysis

and used to convert measured signal time courses into

concentration–time courses [19].

Individual concentration– time courses were analyzed

using a pharmacokinetic two-compartment model [19], which

described the transport of Gd-chelate through capillaries

and its bidirectional transport between plasma and inter-

stitial space. Using the program MKMODEL (version 5.0;

Biosoft, Cambridge, UK), the permeability–surface area

product per unit of vascular volume (PS/VP), the RBV per

unit tissue mass RBV (ml/100 g tissue), and the RBF per unit

tissue mass RBF (ml/min/100 g tissue) were estimated

[19,35]. For each group, means and standard deviations

were calculated. Additionally, aggregated concentration–

time courses of tumors were generated by averaging the

individual concentration–time courses determined for six

different groups (three sublines and two localizations).

In vivo [1H]MRS data were postprocessed and displayed

using the user interface jMRUI [36].

Histologic Evaluation

The rats were sacrificed when the tumor diameter ex-

ceeded 15 mm in subcutaneously implanted tumors and

10 mm in orthotopically implanted tumors.

For histologic phenotyping, tumors were dissected, cov-

ered with Tissue-Tek (Sakura, Zoeterwoude, The Nether-

lands), and frozen in liquid nitrogen vapor. Tumor sections

with a thickness of 6 mm were cut using a Reichert-Jung Frigo-

cut 2700 microtome (Leica, Bensheim, Germany). For his-

tology, sections were stained with hematoxylin and eosin (HE).

Double-immunofluorescence images of endothelial cells

and pericytes were generated using primary antibodies

against PECAM-1 (mouse anti-rat anti-CD31 mAb, 1:50 con-

centration; Chemicon International, Temecula, CA) and rabbit

anti-rat Ng-2 (rabbit anti-rat Ng-2 pAb; Chemicon Inter-

national; 1:100 concentration), secondary TRSC-labeled

antibodies against mouse IgG (1:100 concentration; Dia-

nova, Hamburg, Germany), and Cy2-labeled antibodies

against rabbit IgG (1:50 concentration; Dianova). Alterna-

tively, staining of PECAM-1 was combined with that of smooth

muscle actin (SMA). For this purpose, primary antibodies

against SMA (rabbit anti-human anti–SMA pAb, 1:100 con-

centration; Biozol, Eching, Germany) and secondary Cy2-

labeled antibodies against rabbit IgG (1:50 concentration;

Dianova) were used.

Apoptotic cells were assessed by terminal deoxyribosyl

transferase–mediated dUTP nick end labeling (TUNEL)

staining (In Situ Cell Death Detection Kit, TMR red; Roche

Diagnostics, Mannheim, Germany) performed according to

the instructions of the manufacturer.

In all cases, additional counterstaining was performed

using Hoechst nuclear staining (1:100 concentration; Invitro-

gen, Paisley, UK).

Tissue sections were viewed by phase-contrast micros-

copy, and images were captured with a digital camera (Color

View 1; Soft Imaging System GmbH, Muenster, Germany).

For fluorescence microscopy, a Leica microscope (DMRE,

Bensheim, Germany) with an adapted digital camera (F-view

XS; Soft Imaging System GmbH) was used. Quantitative

analysis of marker density on histologic sections was per-

formed by calculating positive area fractions using the Anal-

ysis Software (Soft Imaging System GmbH). In this context,

at least three different tumors per model and implantation

site were analyzed.

For each tumor, more than three different regions of in-

terests were placed randomly. Because the tumors did not

show marked central degradation, it was not necessary to

analyze tumor margins and centers separately.

Statistical Analysis

Differences in parameters characterizing tumor size, vas-

cularization, and immunohistology between groups were com-

pared using Student’s t test at a significant level of P = .05.

Results

Growth and Spread of PCa

In T2w MR images, subcutaneous tumors were clearly

identified as hyperintense relative to surrounding muscles,

whereas orthotopic tumors appeared hypointense relative to

normal prostate tissues. In both cases, a clear delineation of

PCa from surrounding tissues and, thus, reliable determina-

tion of tumor diameters were feasible.

Subcutaneous tumor induction was successful in all H

tumors (n = 12), HI tumors (n = 5), and AT1 tumors (n = 7).

Orthotopic implantation of H sublines, however, succeeded

in only 7 of 12 cases, but in all HI tumors (n = 6) and AT1

tumors (n = 6).

As expected from the characteristics of the tumor sub-

types [31], the growth of tumors diverged and increased from

H tumors, to HI tumors, to AT1 subtypes for both implanta-

tion sites. The comparison of orthotopic tumor growth and

subcutaneous tumor growth indicated that H tumors grew

significantly (P < .05) slower in the prostate than in sub-

cutaneous localization (Figure 2). In contrast, the growth of

orthotopic versus subcutaneous HI and AT1 tumors did not

differ significantly, respectively. Surprisingly, in the case of

orthotopic versus subcutaneous HI tumors, lymph node

metastases were observed in four of six animals, whereas

no metastasis was found for the other models.

Histologic Phenotypes

HE-stained histologic sections of H, HI, and AT1 tu-

mors exhibited marked phenotypical differences (Figure 3).

H tumors showed high stromal density and tubular struc-

tures similar to those found in normal prostate tissues. On

the contrary, HI tumors tended to form irregular ring-like
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structures filled with large amounts of mucin, whereas AT1

tumors were found to be anaplastic without tubular struc-

tures. Thus, glandular differentiation was associated with

slow tumor growth. In this context, immunohistologic analy-

sis indicated that glandular differentiation was associated

with a close interaction of tumor cells and smooth muscle

cells (SMC). Accordingly, SMC fractions decreased from H

tumors, to HI tumors, to AT1 tumors (Figures 4 and 5). SMC

associated with mature vessels represented only a minor

fraction in H tumors, but were dominant in HI and AT1 tumors.

Between orthotopic and subcutaneous HI and AT1

tumors, there was no obvious difference in histomorphology

(Figures 4 and 5). In contrast, subcutaneously growing

H tumors frequently showed dedifferentiated areas with

polyploid tumor cells that were not visible in orthotopic lo-

cations. In addition, compared with subcutaneous ones, there

was a significant decrease in the area fraction of SMC in

orthotopic H tumors. Morphologically, this was reflected by

Figure 2. Acceleration of tumor growth. Growth of H, HI, and AT1 tumors

after orthotopic placement (closed line) and subcutaneous placement (dotted

line). Differentiated H tumors showed the slowest growth rates, whereas

anaplastic AT1 tumors displayed the fastest growth rates. Comparing tumor

growth after orthotopic and subcutaneous implantations, orthotopic H tumors

showed retarded growth (P < .05, starting on day 11), whereas orthotopic HI

tumors exhibited accelerated growth. Differences in the growth rates of

orthotopic and subcutaneous AT1 tumors were not significant. Note: The

decline of the growth curve of orthotopic AT1 tumors on day 17 resulted from

the removal of three animals with symptomatic disease.

Figure 3. HE staining of Dunning PCa. Images of HE-stained orthotopic tumors (A, C, E) and subcutaneous (B, D, F) H tumors (A and B), HI tumors (C and D), and

AT1 tumors (E and F). The corresponding T2w MR images are supplemented on the upper left part of each image. Tumors are labeled with arrows. The loss of

differentiation from H tumors, to HI tumors, to AT1 tumors is visible. Orthotopic H tumors are highly differentiated and show tubular structures. (A) Dedifferentiated

areas, however, are frequently found in subcutaneous H tumors. (B) HI tumors (C and D) secrete mucin, which is found in large lacunes mimicking tubular

structures. AT1 tumors (E and F) have an anaplastic phenotype without distinct resemblance to the tissue of origin. Both HI tumors (C and D) and AT1 tumors (E

and F) do not show marked differences for the two implantation sites. Bar = 100 �m.
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the frequently incomplete or absent surroundings of tubular

tumor cell islets by SMC.

All tumor models showed a highly heterogeneous pattern

of TUNEL staining (apoptosis) without significant differences

between sublines and between orthotopic and subcutaneous

tumors (Figures 4 and 5).

Vessel density, as determined by CD31 immunostaining,

diverged between the different tumor models and implan-

tation sites (Figures 4 and 5). A significantly higher vessel

density was observed in orthotopic H tumors compared

with subcutaneous ones (P < .05) and with subcutaneous

AT1 tumors (P < .01). Cross correlation between the other

conditions did not indicate significant differences. The area

fractions of mature vessels, as indicated by Ng-2 immuno-

staining, decreased from H tumors to HI tumors to AT1

tumors. Significant differences were found for H and AT1

tumors in both implantation sites. However, the comparison

of orthotopic and subcutaneous tumors did not indicate sig-

nificant differences (Figures 4 and 5).

Assessment of Vessel Function by DCE-MRI

H, HI, and AT1 tumors could not be distinguished based

on their RBVand permeability–surface area product (PS/Vp).

In comparing orthotopic versus subcutaneous tumors, there

were no significant differences according to these physiolog-

ical parameters. RBF, however, was lower in orthotopic H

tumors, such as in subcutaneous ones, and in HI tumors

(P < .05) and AT1 tumors at both implantation sites. Further-

more, as a general tendency, cumulated concentration–time

curves showed higher values for subcutaneous tumors of all

sublines (Table 1, Figure 6).

Assessment of Tumor Metabolism by [1H]MRS

Localized in vivo [1H]MR spectra of subcutaneous tumors

showed good reproducibility on comparison between the

three repeated measurements (performed with the same

experimental parameters and voxel positions) of the same

tumor. In addition, for different subcutaneous tumors of the

same subline, comparable spectra were obtained.

However, the spectral pattern of H, HI, and AT1 sublines

examined in this study differed distinctly. As expected for

anaplastic tumors with rapid membrane turnover [16], there

was a distinct Cho peak (d = 3.2 ppm) in AT1 tumors. The

interpretation of resonances at 3.2 ppm in the H and

HI spectra (Figure 7), however, was more complex because

of the presence of a pair of lines resonating at 3.2 and

Figure 4. Results from immunostaining. Plots of mean positive area fractions of SMA, TUNEL, CD31, and Ng-2 (± standard deviation) in orthotopic and

subcutaneous PCa of H, HI, and AT1 sublines. SMA area fractions decreased from H tumors to AT1 tumors and have significantly higher values in orthotopic H

tumors compared with all other tumors and subcutaneous H tumors with subcutaneous HI tumors and both AT1 tumors. Differences between orthotopic HI tumors

and both AT1 tumors, as well as subcutaneous HI tumors and orthotopic AT1 tumors, were also significant. According to TUNEL staining, no significant differences

were observed between the three tumor sublines in orthotopic and subcutaneous locations. Vessel density (CD31) was significantly higher in orthotopic H tumors

as in subcutaneous H and AT1 tumors. Ng-2 decreased from H tumors, to HI tumors, to AT1 tumors without showing significant differences between the orthotopic

and subcutaneous implantation sites of the same subline, but with significant decrease between both H tumors and both AT1 tumors. *P < .05.
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3.4 ppm, with the first one overlapping with the choline

peak. According to measurements in model solutions at 7 T

[37], these resonances (indeed two unresolved triplets) were

attributed to taurine (Tau). Although the Cho intensity domi-

nated in the AT1 tumor spectrum at 3.2 ppm, the cor-

responding signals in H and HI tumors originated mainly

from Tau, as it is known to interact with SMC [38] and to

reduce lipolysis [39].

Further inspection of Figure 7 showed that the signal

intensity of unsaturated lipid fraction (free fatty acids and

triacylglycerides; chemical shift range d = 0.8–1.5 ppm)

increased from differentiated H tumors to HI tumors to ana-

plastic AT1 tumors.

In summary, the results indicate that for differentiated

H tumors, implantation site highly influences growth, whereas

it is less relevant for highly dedifferentiated HI and AT1

tumors. Two major phenotypical differences were observed

between orthotopic and subcutaneous H tumors. Firstly, the

density of CD31-positive vessels was significantly increased

in orthotopic H tumors. Secondly, the SMC density asso-

ciated with tubular tumor cell islets was reduced in sub-

cutaneous H tumors and in the more dedifferentiated HI

and AT1 tumors. In this context, it might be interesting to

Figure 5. Triple-immunofluorescence images of CD31, Ng-2, and DAPI of H, HI, and AT1 tumor sections. Ng-2 (green) colocalized with CD31-positive (red)

vessels but could not be found on the surface of tumor cells. Furthermore, comparing H tumors (A and B) with HI tumors (C and D) and AT1 tumors (E and F) at

both location sites, a significant decrease in the amount of Ng-2–positive vessels was observed. No significant difference was found on comparing subcutaneous

and orthotopic tumors. The triple-immunofluorescence images of CD31 (red), SMA (green), and DAPI (blue) of H, HI, and AT1 tumor sections are shown in (G) to

(L). In orthotopic H tumors, most SMAs localized around glandular tumor islets, and only minor amounts were associated with CD31-positive vessels. In

subcutaneous H tumors, the association of SMC and tumor cells decreased, and the surroundings of tubular tumor cell specifications were frequently incomplete or

absent (arrows). In HI and AT1 tumors, SMA was predominantly found along vascular structures, which is true for both implantation sites. Almost no direct

association of glandular tumor cell islets and SMC could be observed. Bar = 100 �m.

Table 1. Parameters of Tumor Vascularization (Mean ± Standard Deviation)

Estimated from DCE-MRI Data Using an Open Two-Compartment Model.

Permeability

(PS/VP) (l/min)

RBV

(ml/100 g)

RBF

(ml/min/100 g)

H orthotopic 1.6 ± 3.9 3.1 ± 2.8 63 ± 36

H subcutaneous 1.6 ± 1.3 2.2 ± 0.5 108 ± 35

HI orthotopic 1.8 ± 2.8 1.9 ± 0.6 109 ± 22

HI subcutaneous 1.0 ± 2.7 1.9 ± 0.5 145 ± 53

AT1 orthotopic 1.0 ± 3.5 3.1 ± 2.3 119 ± 110

AT1 subcutaneous 1.2 ± 2.8 2.2 ± 0.5 127 ± 79

Figure 6. Concentration– time courses from DCE-MRI. The concentration–

time courses were averaged over tumors within each of the six groups.

Higher concentrations of the contrast agent compared to their orthotopic

counterparts are accumulated in subcutaneous tumors.
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know that [1H]MRS indicated that H, HI, and AT1 tumors

contained different amounts of Tau, which is known to play a

role in the stabilization and differentiation of SMC. The pos-

sible association of these findings will be discussed in detail

in the Discussion section.

Discussion

Our results from noninvasive imaging, in combination with

histologic evaluation of experimental PCa, demonstrate sev-

eral novel findings on the influence of microenvironment

on the PCa phenotype: 1) the growth of highly differentiated

H tumors was influenced by implantation site; 2) influence

seemed less important for the development of intermediate

malignant HI tumors and anaplastic AT1 tumors; 3) in ortho-

topic H tumors, SMC had a close interaction with glandular

tumor islets, which was reduced in subcutaneous H tumors

and was almost absent in HI and AT1 tumors; 4) microcircu-

latory parameters estimated from DCE-MRI data did not

show significant differences between tumor types, whereas

higher perfusion values were observed in all subcutaneous

tumors compared to orthotopic ones; 5) microvessel density

was increased in orthotopic H tumors compared with sub-

cutaneous ones and other models at both implantation sites;

6) the amount of mature vessels decreased from H tumors,

to HI tumors, to AT1 tumors; and 7) [1H]MRS indicated a

decrease in Tau and an increase in lipid components from low

to high malignant tumors.

These observations may point to an important mecha-

nism of PCa dedifferentiation and to the need of tumor

models grown in an adequate microenvironment. From

various tumors [40], such as bladder carcinomas [41], colon

carcinomas [42], renal carcinomas [43], and PCa [44], it is

already known that the tumor phenotype and its metastatic

potential are different between orthotopic and subcuta-

neous tumors. In addition, using the Dunning AT3 PCa

model, different routes of systemic spread were described

for orthotopically and subcutaneously grown tumors [45].

Subcutaneous tumors grown in the flank exhibited lung

metastases, whereas those grown in the prostate metasta-

sized locally. They also displayed a higher take rate when

implanted orthotopically. In contrast, in our study, highly

differentiated H tumors had a lower take rate and slower

growth when implanted orthotopically, whereas HI and AT1

tumors grew in both locations comparably (Figure 1). How-

ever, in HI tumors, we detected macroscopic lymph node

metastases only after orthotopic implantation, which is in line

with the findings of Glinskii et al. [44] describing the presence

of circulating tumor cells of PC-3 PCa in nude mice only after

orthotopic implantation.

Significant differences in growth were observed between

subcutaneous and orthotopic H tumors. The H tumor subline

represents an experimental tumor quite similar to that found

in humans, and there are several studies dealing with hor-

mone dependence and growth pattern. Although Lubaroff

and Culp [46] reported glandular differentiation both for

orthotopic and subcutaneous tumors, we regularly found de-

differentiated islets only in H tumors grown subcutaneously.

Figure 7. [1H]MRS of subcutaneous Dunning PCa. Localized in vivo [1H]MR

spectra of subcutaneous H, HI, and anaplastic AT1 tumors [PRESS technique:

water signal suppression, TR = 2000 milliseconds, TE = 14 milliseconds,

number of excitations = 128, voxel size = 4 � 4 � 4 mm3, planar surface coil

B0 = 9.4 T]. The chemical shift scale (d) could be fixed by identification of the

peaks of >N-CH3 protons of Cr (H and AT1) and of methylene and methyl

protons of lipids (Lip) (HI and AT1). Analysis of the multiline spectrum of AT1

tumors yielded the signal of methylene protons of Cr at d = 3.9 ppm, whereas

the resonance at d = 3.2 ppm appeared as a superposition of the N-trimethyl

proton signal of Cho and a signal at about 3.25 ppm (shoulder at the low-field

side). This signal, together with the peaks at d = 3.52 and 4.1, was tentatively

assigned to myo-inositol (mIns) using chemical shifts (d = 3.28, 3.52, 3.62, and

4.06 ppm) measured at B0 = 7.0 T for mIns model solution [37]. Inspection of

the spectrum of H tumors led to the assignment of two peaks of equal intensity

at about 3.2 ppm (with possible signal contribution of Cho) and 3.4 ppm

(measured chemical shift difference: 0.17 ppm) to Tau when referring to shifts

d = 3.26 ppm (triplet) and 3.43 ppm (triplet) observed in a Tau model solution

at B0 = 7.0 T [37]. Tau was observed in all three spectra. The peaks at d = 2.05

(resolved in all spectra) and 3.75 ppm (HI and AT1) with varying intensities

could not be assigned unambiguously.
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These may be derived from new tumor cell mutations occur-

ring during the growth of tumors or from the preexisting 8%

to 30% HI cells, which have been described by Smolev et al.

[47] to initiate growth soon after castration.

Under normal conditions, androgen-dependent stromal

cells play a crucial role in maintaining a fully differentiated

growth-quiescent gland. It is also known that prostatic

carcinogenesis is associated with changes in interactions be-

tween the stromal microenvironment and tumor cells [7,48].

In this context, Cunha et al. [7] found progressive loss of

SMC and appearance of carcinoma-associated fibroblasts.

Thus, slow growth and high differentiation of orthotopic H

tumors might have been preserved by a close interaction with

stromal cells. The growth of hormone-independent HI and

anaplastic AT1 tumors, however, may depend, to a lesser

extent, on implantation site due to minor requirements for

stromal interaction and better adaptation to varying implan-

tation sites caused by clonal mutation and selection [7]. Here,

malignant stroma may contribute more for maintaining the

three-dimensional tumor architecture [49] than for keeping

a differentiated tumor phenotype.

Tumor growth and differentiation strongly depend on blood

supply, vascularization, and angiogenesis [50–52]. Ac-

cordingly, in our models, significant differences in tumor

vascularization were observed. A decrease in mature ves-

sel fractions from H tumors, to HI tumors, to AT1 tumors was

observed, which is in line with previous observations describ-

ing a negative correlation of tumor malignancy with vessel

maturity for different tumor entities [53]. However, orthotopic

H tumors developed the highest vessel density of all models

and presented a higher density of Ng-2–positive mature

vessels than AT1 and HI tumors. The observation of a higher

vessel density in orthotopic Dunning PCa is in line with the

findings of Chen et al. [54], who found a higher total vessel

density in anaplastic MatLyLu-Dunning carcinomas grown in

the prostate compared with subcutaneous tumors. However,

it remains uncertain why, in our study, this was only true for

differentiated H tumors, whereas for highly dedifferentiated

HI and AT1 tumor models, we did not observe significant

differences in vessel density between orthotopic and subcu-

taneous tumors. Besides the influence of the local micro-

environment on tumor angiogenesis, the high vessel density

(CD31) and the high fraction of Ng-2–positive mature vessels

observed in low malignant orthotopic H tumors may also be

explained by slow tumor growth, giving tumors more time to

develop a stable and functional vascularization [55,56].

Surprisingly, orthotopic H tumors showed perfusion lower

than those of subcutaneous ones and HI and AT1 tumors,

independent of their implantation site. An explanation as to

why higher vessel density may not go along with increased

RBV and perfusion is that a relevant amount of tumor blood

vessels, which are evaluated histologically, may not function-

ally contribute to tumor blood supply [57]. Mature vasculari-

zation with a lower frequency of vascular shunts may be

another explanation for the reduced perfusion in orthotopic

H tumors. Furthermore, histologic evaluation does not con-

sider the quality of feeding and draining host vessels and the

level of interstitial pressure [52,58]. Thus, recruitment of host

blood and lymphatic vessels from different host tissues

may be variable, and its resulting consequences on inter-

stitial pressure may also explain changed tumor perfusion.

This hypothesis is strengthened by the fact that all sublines

exhibited lower perfusion in orthotopic implantation sites.

A high number of metabolites of low molecular mass were

detected in tumors in vivo using high-resolution [1H]MRS at

9.4 T. Firstly, the concentration of free fatty acids increased

from highly differentiated H tumors to less differentiated HI

to AT1 tumors. This is in agreement with findings in hepato-

cellular carcinogenesis [22] and may result from increasing

amounts of free lipids, owing to aggravated lipolysis in

tumors, enhanced membrane turnover, and the development

of micronecrosis. Secondly, a significant increase in the level

of Cho (mainly phosphocholine and glycerophosphorylcho-

line) as intermediates of membrane synthesis and degra-

dation was observed in anaplastic AT1 tumors, which is in

line with the clinical findings on PCa, brain tumors, and other

neoplasias [59]. In contrast, in H and HI tumors, major con-

tributions to the peak at d = 3.2 ppm were assigned to Tau,

and the amount rose in contrasting ranges of lipid com-

ponents from AT1 tumors, to HI tumors, to H tumors. Tau is

known to decrease lipid peroxidation and can reverse the

contractile dysfunction of SMC [39]. Moreover, Tau restores

the secretion and expression of extracellular superoxide

dismutase, a glycoprotein secreted from vascular SMC [38].

Darnowski et al. [60] found a mechanism by which taurolidine,

a derivate of Tau, caused cell death by apoptosis; therefore,

Jacobi et al. [61] were successful in pointing out the anti-

cancerogenic and antiangiogenic effects of taurolidine. Apop-

tosis indicated by TUNEL staining, however, was not shown

to increase in our tumor models with high Tau levels.

Taking into account the data from the literature and our

findings, we postulate that the levels of Tau in PCa may have

an impact on tumor malignancy by modulating the interaction

of tumor and SMC, which seems to be a prerequisite for

differentiated phenotype. However, these findings have to be

validated on PCa specimens of patients to elucidate whether

the association of SMC with tumor cells and the levels of Tau

and lipids in PCa can be used as diagnostic indicators of

tumor malignancy.
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